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On Cavities in Thermally 
Spheroidized Powder Particles* 

R. Klima and P. Kotahk 

A melted spherical particle begins to solidify on cooling, and the radius of the first thin solid layer is ap- 
proximately equal to the radius of the melted particle. Since the density of the solid phase is higher than 
that of the liquid one, porosity forms inside the sphere during further solidification. The pressure in the 
remaining melted material may decrease considerably. The requirement for a pressure balance implies 
that a relationship for the pore radius can be derived. The pore arises as a bubble in a boiling liquid. The 
bubble stability and its minimum radius are derived, as well as conditions for its formation. It is shown 
that, at most, one bubble can occur in the particle. 

Analytical results are applied to the case of alumina particles, and the growing process of the cavity is 
simulated. Craters found on some spheroidized particles stem from asymmetry of the solid shell forma- 
tion and the simultaneous action of the atmospheric pressure. The practical importance of this effect is 
that additional porosity may be formed in thermal spray products. 
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1. Introduction 

Hollow spheres are often obtained during spheroidization of 
fine powder grains with the aid of, for example, plasma jets (Ref 
1,2). Small cavities arise due to the higher density of the solidi- 
fying surface layer compared to the melted phase and when very 
fast cooling does not allow compression under atmospheric 
pressure (Ref l). 

The presence of cavities inside particles (see Fig. 1) leads to 
a lower density of the powder and, consequently, to additional 
porosity of  the final products. Therefore, a more detailed analy- 
sis of that phenomenon may be desirable. 

The purpose of this paper is to give a simple physical the- 
ory of  cavity formation. Our study is based mostly on stand- 
ard thermodynamics, with inhomogeneities connected with 
the crystal structures being neglected. Although this ap- 
proach is not completely rigorous, it is used as a first approxi- 
mation. 

In what follows, the conditions to form cavities in quickly 
cooled solidifying particles are derived, possible motions of the 
cavities are pointed out, and the final volume of a cavity is cal- 
culated. The results are supported by a computer simulation of 
particle cooling and cavity growth. 

2. Physical Model 

2.1 Pressure Evolution in the Melted Phase 

Assume a completely melted spherical particle with only ra- 
dial dependence of temperature. If cooling of the particle is 
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spherically symmetric, a solid layer grows at the entire particle 
surface. Since the mass density of  the solid phase, Ps, is higher 
than the density of the melted one, Pm, the hydrostatic pressure 
in the melted phase decreases. Simultaneously, the sphere ra- 
dius, R0, can decrease due to the atmospheric pressure. We as- 
sume that cooling is sufficiently fast that this sphere 
deformation is negligible. Thus, the radius R0 of the first thin 
solid shell is constant. 

Consider the pressure variations in the melted phase before 
formation of the cavity. Let R m be the radius of  the melted mate- 
rial, the layer between Rm and R 0 being solid. If the solidification 
steps by IARml toward the sphere center, the remaining melted 
material is subjected to a volume dilatation of: 

AVp = ( 1 -  ~ s  14r~ RLIARml > 0 (Eql) 

given by the increase of the mass density from Pm to Ps during 
the phase transition. The corresponding decrease of  the pressure 
in the melted region is: 

AVp 
AP = - (Eq 2) 

~cV 

where n is the coefficient of  the volume compressibility and Vis 
the volume of the melted phase. Using Eq 1 in Eq 2 and limiting 
AR m ~ 0, we obtain: 

dP _ 3 [ 1 -  Pm) (Eq3) 
dem lr ~ Ps ) 

a relation giving the dependence of the pressure in the whole 
melted region on its radius Rm: 

Ps )  R---~ (Eq4) 
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where P1 is the atmospheric pressure (equal to initial pressure in 
the melted drop). Thermal dilatations different from AVp and 
possible variations of ~c have been neglected. 

2.2 Bubble Formation 

According to the Clausius-Clapeyron equation, the boiling 
point temperature decreases with pressure decrease. In fact, the 
pressure of the melted phase can even reach, for a moment, 
negative values at early stage of the solidification. Therefore, a 
bubble arises in the region of the highest temperature of the melt. 
If  the radius of  the (supposedly spherical) bubble is R b << R m, 
the pressure of  the melted phase increases by: 

AP "" - -  (Eq 5) 

Due to the surface tension, ~, the pressure inside the bubble is 
2t~/Rb higher. 
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T. 
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Force due to surface tension 
Molecular mass in atomic units 
Atmospheric pressure 
Tension of vapors in the bubble 
Decrease of  melted phase pressure 
Heat of evaporation 
Variable radius 
Radius of the initial droplet 
Bubble radius 
Minimum bubble radius 
Radius of the unstable bubble 
Radius of  the stable bubble 
Radius of the final cavity 
Universal gas constant 
Radius of  the melted material 
Particle radius decrease owing to the 

atmospheric pressure 
Solidification step toward the sphere center 
Thickness of the solid shell (= R 0 - Rm) 
Melted material dilatation due to AR m 
Local temperature in the melted phase 
Boiling point temperature at P1 
Temperature in the bubble 
Critical temperature 
Melting point temperature 
Maximum temperature in the melted material 
Volume of  the melted phase 
Volume of the initial droplet 
Volume of  the final cavity 
Experimentally found cavity volume 
Coefficient of thermal volume dilatation 
Coefficient of volume compressibility 
Viscosity of the melted material 
Density of  the melted phase 
Density of  the solid phase 
Surface tension 

Let us introduce the thickness of the solid shell, AR s = R 0 - 
R m. Accounting for only first-order terms ARs/R o in Eq 4 and ne- 
glecting them in Eq 5, we obtain the equation of pressure equi- 
librium in the bubble as: 

1r / Ps ) R0 - lCR~ + R b (Eq 6) 

where Pv is the tension of  vapors in the bubble, Pv < P1- Pv could 
be found from the data given in Ref 3, or determined approxi- 
mately from the relation: 

Pv = Plexp Rg T l 

where q is the heat of evaporation, Rg is the universal gas con- 
stant, T l is the boiling point temperature at the atmospheric pres- 
sure P1, and Tb is the temperature in the bubble. Considerable 
discrepancies have been found in the literature concerning the q 
and Pv values in the case of A1203. However, useful information 
can be extracted from Eq 6 without determining the value of  Pv. 
Note that the left-band side of  the equation increases linearly 
with AR s from a negative value at AR s : 0. The right-hand side 
of Eq 6 is positive for all values of  the bubble radius R b. The al- 
gebra of this expression implies that: 

�9 At a given ARs, two real values, Rbl and Rb2 (Rbl -< Rb2), sat- 
isfy Eq 6. 

�9 The right-hand side of  Eq 6 as a function of  Rb has a single 
minimum at: 

�9 "2CY1r "1/4 

Note that this value does not depend on Ps and Pro. 

The minor root Rbl -< R~ m is unstable. 

Therefore, the stable solution ofEq 6 is: 

R -/~' >R rain (Eq9) b -- "'b2 b 

The minimum value of  the right-hand side of Eq 6 (multi- 
plied by ~c) corresponding to the value ofR~ nm is approximately: 

_ "2(IK "3/4 7/ 0/ 4 

Thus, the solution ofEq 6 exists if: 

K(P v - P l )+  3 [ 1 -  ~ ] Z ~ s  7(2(YK/3/4 
Ps i  Ro >4~,R 0 ) (Eql0) 

In other words, this inequality is the condition of existence of the 
stable bubble. Since Pv < PI, the necessary condition for this is: 

-1 

R 0 - 1 2 ~  R 0 ) 1 Ps) (Eq 11) 
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On the other hand, the sufficient condition for the existence of 
the bubble is obtained by deleting the unknown value of Pv: 

(Eq 12) 

These relations are used in section 3 for practical estimates. 

2.3 Bubble Motion in Temperature Gradient 

Surface tension, c ,  decreases with increasing temperature, T 
(Ref 3): 

dG B[Pm/2'3 

) 

where M is the molecular  mass in atomic units and B = 2.1 x 
10-5kgl/3m2s -2 K -l .  If  the temperature in the vicinity of  the 
bubble is inhomogeneous, the pressure 2O/Rb is also inhomo- 
geneous. Assuming that, near the bubble, the temperature 
changes slightly with respect to the bubble diameter, we inte- 
grate the pressure 2t~/R b over the bubble surface to obtain the net 
force acting on the bubble: 

8 2 dt~ 
F = - -~ 7tR b ~-~ grad T (Eq 14) 

In other words, the force - F  acts on the liquid adjacent to the 
bubble. Consequently, the bubble moves with velocity v, given 
by the balance of  the force F and the viscous drag (Ref4): 

2Rb d~ 
v - 311 dT grad T (Eq 15) 

where B is the viscosity of the melted material. As a result, a bub- 
ble born in a region of  inhomogeneous temperature will move 
toward the temperature maximum. 

2.4 Volume o f  the Final Cavity 

Concluding this section, we present an expression for the 
volume, Vc, of  the resulting cavity in the solidified spherical 
drop. According to our idealized model of  zero deformation by 
atmospheric pressure, Vc equates to the difference between the 
volumes of the melted and solid matter. This is calculated by 
considering the inverse process, namely, melting of  the solid 
particle. In this case, unlike the previous discussion, the thermal 
dilatation of  the melted drop is included. Integration over the 
volume, V0, of  the spheric drop gives: 

Pm 3or v e~ 
j 0  [T(R) Tin] R2dR (Eq 16) Vc _ l -  

v0 p-; + o 

where ctv is the coefficient of  thermal volume dilatation, T m is 
the melting point temperature, and T(R) is the local temperature 
at the moment of the sphere surface solidification. The last term 
in Eq 16 is often negligible. Then, 

(0mt 
R0 - 1 Ps )  

is a simple estimate of the cavity radius Re. 

(Eq 17) 

3. Estimates for Alumina Particles 

The mass densities of  melted and solid A1203 are Pm = 2750 
kg/m 3 and Ps = 3900 kg/m 3. The value of  the surface tension is 
estimated by using Eq 13, where now M = 102: 

da  
- -1.9 • 10-4N/mK (Eq 18) 

dT 

This is integrated from the critical temperature, Tcr, where cy = 0, 
to the maximum temperature, Tmax, in the melted phase. Accord- 
ing to Ref 3, a rough estimate is Tcr-'-" T1/0.64, T 1 = 3000 ~ 
and, therefore, Tcr -'-- 4700 ~ 

The value of Tma x is given by numerical modeling that is 
based on improving the finite-element method used in Ref 5 to 
model the thermal evolution of alumina particles in a plasma jet. 
The improvement takes into account the volume changes due to 
solidification so that precise mass conservation is achieved. 
Without going into details on the transport coefficients needed 
(these are summarized in Ref5), Fig. 2 indicates the temperature 
profiles for an A1203 particle of 30 Bm radius and an initial tem- 
perature of  2800 K. Particle cooling was driven by Newton's law 
with constant values of an external environment temperature 
and heat-transfer coefficient, 500 K and 105 W/m 2 �9 K, respec- 
tively. We see that Tma x at the moment of  bubble formation is 
about 2470 K. Then, from Eq 18: 

- 1.9 x 10~'(Tcr - Tmax) = 0.5 N/m (Eq 19) 

No data have been found concerning the value of compressi- 
bility coefficient ~: for melted alumina. The values of 1r given in 
the literature (e.g., Ref3) for very different liquids are, in almost 

9 1 all cases, on the order of  10- P a - .  This value is used in the pre- 
sent calculations. Possible error in 1r implies almost the same er- 
ror in quantities ARs/R 0 (given by Eq 11 and 12), which, 

Fig. 1 Cross section of a hollow AI203 + 13TiO 2 particle. Courtesy 
of B. Kolman 
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Fig. 2 Temperature profiles in 30 I.tm A1203 panicle at the times n • 
5 • 10 -5 s, n = 0, 1 . . . . .  8 (solid lines) and cavity surface temperature 
during solidification (dashed line) 

however, remain very small. The value of R~ in in Eq 8 is much 
less sensitive to variations in ~r due to the exponent 1/4. 

Let us consider a solidifying alumina droplet with the above- 
mentioned values of Pro, Ps, Tmax, G, 1r and radius R 0 = 30 lam. 
The necessary condition (Eq 11) to give rise to a stable bubble is 
ARslR 0 > 8 • 10-4. The sufficient condition (Eq 12) is ARslR 0 > 
9 x 10 -4. These two values of the solid shell thickness are almost 
equal and very small. Consequently, the bubble arises immedi- 
ately after the start of solidification. 

The minimum bubble radius is given by Eq 8 and 9, 
R~m/Ro -- 1/20. We remark that the pressure of surface tension 
2G/R~ m is about 0.6 MPa, a considerable value. 

The velocity driven by the temperature gradient here is: 

R b 
v = 1.3 x 10 -4 - -  grad T (Eq 20) 

~t 

In view of the lack of experimental data, we estimate ~ = (1 - 
10) x 10 -3 kg/ms. The temperature gradient implied by numeri- 
cal modeling (see Fig. 2) is on the order of 100 K/R0. Then, a 
bubble of radius Rb = R0/10 moves with velocity v--- (0.I - 1) 
m/s, a value higher than the velocity of the solid/liquid boundary 
motion during the process in question (again, see Fig. 2). 

According to Eq 17, the final cavity radius is Re --" 0.67 R0, a 
value precisely confirmed in Fig. 2. 

4. Concluding Remarks 

It has been shown that the formation of a cavity in a solidify- 
ing drop starts from vapor bubble. The reason is the cavitation 
phenomenon in response to a pressure decrease that occurs due 
to the lack of material under the growing solid shell. (The possi- 
ble reabsorption of a gas has not been considered.) The balance of 
pressures acting in the melted material and in the bubble (Eq 6) im- 

plies the minimum bubble radius (Eq 8), which does not depend 
on the mass densities--pro, ps---ofthe melted and solid phases. 

The following physical picture concerns the stability of 
solution of Eq 6 with respect to the unknown R b. If the solu- 
tion Rbl < R~ m occurs, the value Of Rbl decreases with an in- 
crease of solid shell thickness AR s. Simultaneously, the 
pressure in the liquid phase further decreases. Consequently, 
this liquid is unstable with respect to nucleating a bubble with 
the larger radius Rb2 > R~ rim. If a new bubble arises, the first bub- 
ble collapses under the action of the surface tension. Then, the ra- 
dius Rb2increases with the growing shell thickness and the process 
is stable. This is also the reason why only one cavity can occur. 

The necessary (Eq 11 ) and sufficient (Eq 12) conditions of 
a stable bubble existence give the minimum thickness of the 
solid shell at the bubble formation. This shell is very thin, im- 
plying that the bubble is born at the very early stage of the 
droplet solidification. 

The motion driven by the surface tension inhomogeneity in a 
temperature gradient is thermophoretic effect. It can be signifi- 
cant when the bubble arises outside the temperature maximum. 

The radii of the resulting cavities (R c --" 2R0/3) calculated 
from our theory are somewhat larger than those found in ex- 
periments (Ref 2). The reason is that the atmospheric pres- 
sure can diminish the solidifying particle radius R0. This 
effect should be estimated after the values of necessary mate- 
rial constants are known, namely, the creep behavior of solid 
alumina at high temperatures. 

On the other hand, the experimentally found cavity volume Vce 
implies that the value of the particle radius decreases by ARatw, 
which occurs due to the atmospheric pressure. Comparing Vce with 
the theoretical value Vc in Eq 16 and neglecting the dilatation pro- 
portional to o~v yields the following simple relation: 

/ 
R0 3V c 1 - Ps )  

For alumina particles, this value is approximately 0.1 or less. 
Craters (open surface voids) found on some spheroidized parti- 
cles result from asymmetry of the solid shell formation and the 
simultaneous action of the atmospheric pressure. 
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